ハイアフィニティ分子間相互作用解析システム
KinExA 4000

ハイアフィニティ分子間相互作用解析システム KinExA 4000

KinExA シリーズ:資料ダウンロード

ハイアフィニティ分子間相互作用解析システム KinExAシリーズのカタログ等の資料ダウンロードページです。

マニュアルやHow To Guidesは  ユーザーサポートページをご覧ください。

◆ カタログ

◆ ホワイトペーパー

◆ テクノロジーノート

◆ ニュースレター

Sapidyne Instruments社が毎年発刊しているニュースレターです。KinExAに関する様々な有用な情報が掲載されています。

◆ 参照論文

Affinity & Kinetic Measurements: ​

KinExA technology overview:
  • Wani T.A., et al. 2016.
    New analytical application of antibody-based biosensor in estimation of thyroid-stimulating hormone in serum. 
    Bioanalysis 10.4155/bio-2015-0034.  https://www.ncbi.nlm.nih.gov/pubmed/26978548 
  • Glass T.R., Winzor D.J. 2014.
    Confirmation of the validity of the current characterization of immunochemical reactions by kinetic exclusion assay. 
    Anal Biochem 456: 38-42.  http://www.ncbi.nlm.nih.gov/pubmed/24751468 
KinExA’s role in drug discovery:
  • Fan Y., et al. 2016.
    Immunological Characterization and Neutralizing Ability of Monoclonal Antibodies Directed Against Botulinum Neurotoxin Type H
    The Journal of Infectious Diseases 15;213(10):1606-14.  https://www.ncbi.nlm.nih.gov/pubmed/26936913
Significance of “solution phase” measurements to unmodified molecules:
  • Kusano-Arai 0., et al. 2016.
    Kinetic exclusion assay of monoclonal antibody affinity to the membrane protein Roundabout 1 displayed on baculovirus.
    Anal Biochem.10.1016/j.ab.2016.04.004.  https://www.ncbi.nlm.nih.gov/pubmed/27095060
Comparison to SPR:
  • Kusano-Arai 0., et al. 2016.
    Kinetic exclusion assay of monoclonal antibody affinity to the membrane protein Roundabout 1 displayed on baculovirus. 
    Anal Biochem.10.1016/j.ab.2016.04.004.  https://www.ncbi.nlm.nih.gov/pubmed/27095060
Sensitivity to measure tight binders:
  • Kostenuik P.J., et al. 2009.
    Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL.
     J Bone Miner Res 24: 182-195.  http://www.ncbi.nlm.nih.gov/pubmed/19016581
  • Luginbuhl B., et al. 2006.
    Directed evolution of an anti-prion protein scFv fragment to an affinity of 1 pM and its structural interpretation. 
    J Mol Biol 363: 75-97.  http://www.ncbi.nlm.nih.gov/pubmed/16962610
  • Rathanaswami P., et al. 2005.
    Demonstration of an in vivo generated sub-picomolar affinity fully human monoclonal antibody to interleukin-8. 
    Biochem Biophys Res Comm 334: 1004-1013.  http://www.ncbi.nlm.nih.gov/pubmed/16038881
Reverse assay techniques:
Whole cell binding techniques:
  • Bedinger, D., et al. 2015.
    Differential pathway coupling of activated insulin receptor drives signaling selectivity by XmetA, an allosteric partial agonist antibody. 
    J Pharmacol Exp Ther353(1):35-43.  http://www.ncbi.nlm.nih.gov/pubmed/25613982
  • Xie L., et al. 2005.
    Measurement of the functional affinity constant of a monoclonal antibody for cell surface receptors using kinetic exclusion fluorescence immunoassay. 
    J Immunol Methods 304: 1-14.  http://www.ncbi.nlm.nih.gov/pubmed/16098983
Unpurified antigens:
  • Bee C., et al. 2013.
    Determining the binding affinity of therapeutic monoclonal antibodies towards their native unpurified antigens in human serum
    PLOS ONE 8(11): e80501.  http://www.ncbi.nlm.nih.gov/pubmed/24223227
  • Fujino, Y., et al. 2012.
    Robust in vitro affinity maturation strategy based on interface-focused high-throughput mutational scanning
    Biochem Biophys Res Commun 4283:395-400.  http://www.ncbi.nlm.nih.gov/pubmed/23103372
Other interesting studies:
  • Li X., Kaattari S.L., Vogelbein M.A., Vadas G.G., Unger M.A., 2016.
    A highly sensitive monoclonal antibody based biosensor for quantifying 3-5 ring polycyclic aromatic hydrocarbons (PAHs) in aqueous environmental samples. 
    Sens Biosensing Res. 7:115-120.  https://www.ncbi.nlm.nih.gov/pubmed/26925369

Immunoassay Techniques:

  • Darwish I.A., et al. 2013.
    Kinetic-exclusion analysis-based immunosensors versus enzyme-linked immunosorbent assays for measurement of cancer markers in biological specimens. 
    Talanta 111: 13-19.  http://www.ncbi.nlm.nih.gov/pubmed/23622520
  • Prieto-Simon B., Miyachi H., Karube I., Saiki H. 2010.
    High-sensitive flow-based kinetic exclusion assay for okadaic acid assessment in shellfish samples. 
    Biosens Bioelectron 25: 1395-1401.  http://www.ncbi.nlm.nih.gov/pubmed/19939663
  • Sasaki K., Oguma S., Namiki Y., Ohmura N. 2009.
    Monoclonal antibody to trivalent chromium chelate complex and its application to measurement of the total chromium concentration. 
    Anal Chem 81: 4005-4009.  http://www.ncbi.nlm.nih.gov/pubmed/19438265
  • Glass T.R., Ohmura N., Saiki H. 2007.
    Least detectable concentration and dynamic range of three immunoassay systems using the same antibody. 
    Anal Chem 79: 1954-1960.  http://www.ncbi.nlm.nih.gov/pubmed/17256970
  • Bromage E.S., et al. 2007.
    The development of a real-time biosensor for the detection of trace levels of trinitrotoluene (TNT) in aquatic environments. 
    Biosens Bioelectron 22: 2532-2538.  http://www.ncbi.nlm.nih.gov/pubmed/17088054
  • Sasaki K., Glass T.R., Ohmura N. 2005.
    Validation of accuracy of enzyme-linked immunosorbent assay in hybridoma screening and proposal of an improved screening method. 
    Anal Chem 77: 1933-1939.  http://www.ncbi.nlm.nih.gov/pubmed/15801721
  • Glass T.R., et al. 2004.
    Use of excess solid-phase capacity in immunoassays: advantages for semicontinuous, near-real-time measurements and for analysis of matrix effects. 
    Anal Chem76: 767-772.  http://www.ncbi.nlm.nih.gov/pubmed/14750874