

Direct labeling of protein with 125I

This protocol describes how proteins can be labeled with ¹²⁵I, suitable for measurements in LigandTracer® Grey. The protocol may also be used for ¹²³I, ¹²⁴I and ¹³¹I, detectable with LigandTracer Yellow (all three) and LigandTracer White (¹²⁴I and ¹³¹I).

Important information

Possession and handling of radioactive material may require licenses and/or special training according to national or local regulations or laws. Do not follow this protocol unless all legal requirements regarding possession and handling of radioactive material are met.

Note that ¹²⁵I will be conjugated to tyrosine residues and may affect the binding properties of some proteins.

Materials

- Protein (preferably at least 0.5 mg/ml in stock solution):
 - -For antibodies or proteins of ~150 kDa: 20-100 μg
 - -For other molecular weights: Aim at a final concentration of 100-600 nM in 1 ml labeled solution
- 125I
- Chloramine-T (CAT)
- Na₂SO₅
- Gel filtration column, e.g. NAP™-5
- PBS
- Ice

Procedure

- Prepare the CAT and the Na₂SO₅ solutions by dissolving them in MilliQ water to obtain a concentration of 4 mg/ml of each. The solutions should be used within an hour and then discarded.
- 2. Add 5-20 MBq ¹²⁵I to an empty tube (annotated "the mixing tube").
- 3. Add the protein and 120 μ l of PBS to the mixing tube.
- 4. Add 20 μl of the CAT solution and mix properly. This will start the reaction. Immediately put the mixing tube on ice and incubate for 5 minutes.
- 5. Add 40 μl of the Na₂SO₂ solution and mix to stop the reaction.
- 6. Remove excess ¹²⁵I using a gel filtration column, such as a Sephadex G-25 column or equivalent matrix, in PBS. Example, with a NAP-5 column:
 - a. Equilibrate column with PBS according to instructions from the manufacturer.
 - b. Add the $^{125}\text{I-labeled}$ protein solution to the column together with additional PBS to get a total sample volume of 500 $\mu l.$
 - c. Eluate with 1 ml PBS.

7. Measure the activity from the background (Bg), the mixing tube (Mix), the column (Cn), and the tube with the eluted labeled protein solution (Elu) and calculate the yield:

$$Yield = \frac{Act_{Elu} - Act_{Bg}}{(Act_{Mix} - Act_{Bg}) + (Act_{Cn} - Act_{Bg}) + (Act_{Elu} - Act_{Bg})}$$

8. Store the conjugate under the same conditions as the unlabeled protein (protein dependent). Siliconized tubes may be used to reduce the risk of non-specific binding during storage.

